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Abstract. The Berry phase for an electron in a one-dimensional box rotated around a 
magnetic flux line has contributions from the geometry and the magnetic flux, which gives 
an Aharanov-Bohm effect. For a circular box enclosing the magnetic flux, the Berry phase 
depends on the boundary conditions. 

The phase discovered by Berry [ l ]  has attracted a great deal of interest in the past 
few years because it occurs in a great variety of problems [2, 31. Among other things, 
Berry [l] showed that his phase was related to the Aharonov-Bohm (AB) effect [4], 
the effect of the vector potential in a field-free region in quantum mechanics [5,6]. 
This relationship was also investigated by Aharonov and Anandan [7], who say that 
a more careful investigation of the problem is needed. The geometry used in these two 
investigations was different. Berry [l]  considered a particle in a box, which was rotated 
by an angle of 271 about an axis containing magnetic flux, and showed that the Berry 
phase was proportional to the magnetic flux. On the other hand, Aharonov and Anandan 
[7] considered a situation in which a beam of particles is divided into two, each going 
on different sides of a magnetic flux line, and finally being recombined. They use an 
approximate treatment, but obtain a Berry phase which depends on the flux. 

In this paper we investigate further the relationship between the Berry phase [ l ]  
and the AB effect [4 ,6]  by solving a simple one-dimensional model of an electron 
which has an amplitude for being in a box of angular width Bo located at a distance 
R from a line with magnetic flux @. When the box is rotated by 271 about the axis 
with magnetic flux, a Berry phase is obtained which is the sum of a term that depends 
only on the geometry (i.e. 8,) and a term that depends only on the magnetic flux, 
Physically, these two contributions have completely different origins, and it is interesting 
that they both contribute to give the total Berry phase. The Berry phase can give an 
observable interference effect if the single electron originally has a non-zero amplitude 
for being in each of two boxes, only one of which is rotated. After rotation of the one 
box by 271, the two boxes are combined. The principle of superposition is used to 
obtain the resultant wavefunction. Because the Berry phase has a flux-dependent term, 
the interference effect depends on the flux. 

This Berry phase flux-dependent interference effect is a new type of A B  effect$, 
since the two boxes can be separated by a macroscopic distance 2 R  before being 

t Present address: Depanmcnt of Physics, University of  North Teras, Denton, Teras 76203. USA. 
$ l h r e  are at least four different A B  effects, which are ( i )  AR diffraction, ( i i )  the bound-slate A B  effect, ( i i i )  
AB scattering, and (iv) the Berry phase A B  effect discussed here. Berry raid [ I ]  that the Berry phase is only 
another way of obtaining the AB effect by using only single-valued wavelunctions. 
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recombined. (In the usual A0 interference effect the flux is placed between two slits 
which are separated by a microscopic distance which is the order of the electron’s 
wavelength.) To record an interference pattern on a photographic plate, the experiment 
must be repeated many times. Each time, the same photographic plate can be placed 
in contact with the combined boxes and exposed. In each experiment only one electron 
is involved, so that the principle of superposition is used with the amplitude +(Ii for 
the electron to be in box 1 and +‘2’ for the same electron to be in box 2 to obtain the 
total wavefunction, $“’++‘2’. When the square of the absolute value of the total 
wavefunction is taken, an interference term is obtained which depends on the relative 
phase between the rotated box and the box at rest. On the other hand, if two electrons, 
each in a different box, are used as suggested by Berry [l], the total wavefunction 
after rotation by 271 of box 2 would be an antisymmetrized product of the wavefunction 
+“)(l) of box 1 and the wavefunction +‘”(2) of box 2, namely [+‘1’(1)+‘2’(2)- 
+“’(2)+”’(1)]2-’’2. When the square of the absolute value of this total wavefunction 
is taken, the interference term does not involve the flux. 

The topology of the problem is changed when the angular width 8, of the box is 
extended to 2 ~ ,  so that it encompasses the whole circle enclosing the flux. If the 
wavefunction is chosen to be single valued, the energy eigenvalues depend on the 
enclosed flux, which is the ‘bound state AB effect’ [ 5 , 6 ] ,  but the Berry phase is 
unobservable. If the wavefunction is multivalued in such a way that the energy 
eigenvalues do not depend on the flux, then there is a non-trivial Berry phase which 
can in principle be determined by interference. The two solutions are, in principle, 
distinguishable by the experiment. The solution and the Berry phase, therefore, depend 
on the topology of the box. 

The simple model considered here is an electron of mass m and charge q constrained 
to move in a box of angular width 8, located a distance R from the z-axis on which 
there is magnetic flux a. The box of angular width 8, is located an angular distance 
0 from the x-axis. In a gauge in which the scalar potential A, of the electromagnetic 
field is zero, the Schrodinger equation is [SI 

{(ii2/21)(-i a /ae -a ) ’+  v(e)}+n = ( 1 )  

where I = mR2 is the moment ofinertia, a = q Q / 2 ~ h c  is adimensionless flux parameter, 
and V(0) is a potentiai energy. i i  tne anguiar width of the box 0, is U <  U,,< 271, then 
the energy of the particle should not depend on the flux on the z-axis because the 
path does not enclose the flux. The potential V(0) can be chosen so that a solution 
to (1 )  is the eigenfunction 

+,(e) = e,’i2 exp{i( K. + a  j( e -@))U( 6 -@)U(@+ e,- e )  (2) 

1 for x 2 0, aiid U(X) = 0 foi .L. r ,  :.:>. .L.- r.~~...I.- wnere ine ncavisiue sicy iunuwri ii is defriied G[X) 
x<O. When (2) is substituted into (1). the eigenvalue obtained is 

E . =  h2Ki/21 (3) 

which is real. The potential V(0)  in ( 1 )  must be chosen to cancel the contributions 
from the end-points and is 

v(0) = ( h i / 2 1 ) { [ 6 ( 0 ) + 2 i K . ] S ( 0 - @ ) + [ S ( 0 ) - 2 1 K . ] S ( B f  8 0 - 0 )  

+ S’(0 - 0) + S ’ ( 0 f  0,- 0) )  (4) 

which is complex, state (or velocity) dependent, and highly singular at the end points. 
The reason the potential is complex is that the solution in (2) is a wave travelling in 



Berry phase, Aharonov-Bohm effect and topology 3553 

a counterclockwise .direction in the angular sector (0, O +  0,). Therefore, there must 
be a source of probability at 0 = 0 and a sink of probability at 0 = O +  0, to account 
for the solution (2). Probability (and hence charge) is not conserved locally, which is 
an unphysical feature of this otherwise illustrative model. The solution in (2) is chosen 
to satisfy the boundary condition 

$A@+ 0,) =exp(ia0,)$.(Q) ( 5 )  

U. = 2nn 18, ( 6 )  

which determines 

where n = 0, *I, * 2 , .  . . . The energy in (3) is therefore independent of the flux @, since 
the box containing the electron can be shrunk to a point without enclosing the flux. 
For this reason the wavefunction in (2) was chosen with the boundary condition in (5). 

Even though the potential in (4) is complex and state dependent, the eigenfunctions 
in (2) are orthonormal 

(!bnI$,") = fin",. (7 )  

( & $ n l $ m )  = ( $ n I b # m ) =  Kd%m (8) 

(W. I $ m )  = (h I H $ J  = E,&,. 

The kinetic angular momentum operator L, = -i a l a 0  -a is Hermitian 

with the wavefunctions in (2). The Hamiltonian in (1) is also Hermitian 

(9) 

The values K. and E. in (6) and (3), respectively, are both real. It appears that the 
complexity and state dependence of the potential in (4) compensate each other in 
order to give real energy eigenvalues. 

If 0 depends on the time, there is also a non-trivial Berry phase for this problem. 
The gauge-invariant Berry phase [7,9, IO] at time T is 

Y,,(T)= f i - '  /ordt($.l(ifi ala t -qAd$, ) .  (10) 

This generalized Berry phase is invariant under gauge transformations, so no gauge 
can be found to make the Aharonov-Bohm flux-dependent contribution part of the 
dynamical phase, contrary to a statement in [7, p 15951. In the gauge used here, in 
which the scalar potential A ,  is zero and the wavefunction is given by (2), the Berry 
phase is 

yn( T )  = ( K .  + a)AO (11) 

where PO = O( T )  -O(O) is the angle by which one box is rotated with respect to the 
other. If the box of angular width Bo is rotated by 271 radians in the time T, then 
PO = 2n, and the Berry phase is 

y. ( T) = 2 n ( 2 n n /  8,) + 2na (12) 

which is the relative phase between the rotated box and the box at rest. On the 
right-hand side of (12) the first term is purely geometrical because it depends only on 
Bo. The second term depends only on the magnetic flux @ = 2 n h c a / q  enclosed by the 
orbit of the box when it is rotated by 271 radians. Since both 8, and @ can be varied 
separately, it is possible to distinguish between the contribution of the flux and the 
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contribution of the geometry to the Berry phase. For example, if 2~{(27rn/e,)- 
[ 2 7 r n / 0 , ] } # 0  and 27r{ru - [ a ] ) = O ,  where [XI denotes the largest integer less than or 
equal to x, there is a non-trivial Berry phase due to the geometry of the box Bo which 
can be observed by interference. On the other hand, if 27r { (27r~1 /Bo) - [27rn /0 , ] }  = o  
and 27r{a - [ a ] }  # 0 there is a non-trivial Berry phase due to the magnetic flux that 
can be observed by interference. In general both the effect of the geometry of the box 
and the magnetic flux contribute in an additive way to the Berry phase, even though 

The geometrical contribution (dependent on 0,) to the Berry phase in (12) is the 
contribution of the second term on the right-hand side of (34) in Berry's original paper 
in [l]. In that paper [l]  the term vanishes by  normalization because he chose the 
wavefunction to be real. In our case the wavefunction in (2) is complex and hence 
contributes to the total Berry phase. The geometrical contribution to the Berry phase 
also appears in another guise in the second term on the right-hand side of (IO) in [7!; 
If this term 4 p '  dx/h is replaced by $ hx. dO/h = 2 7 r ~ "  we obtain the first term on the 
right-hand side of our ( 1 2 ) .  (See note 9 of [7] for a discussion of this point.) 

When eo= 271, the topology of the model changes, and the path of the particle can 
now no longer be shrunk to a point without crossing the magnetic flux on the z-axis. 
The boundary condition in ( 5 )  requires that the wavefunction be multivalued, 

(E) 

but there is no need for Heaviside step functions. Equation (13) is a solution of ( I )  
with the potential V = O .  In this case the flux-independent energy is also given by (3) 
with K. = n from (6). When one box (circle) is rotated by an angle A@=@(T)-Q(0)  
with respect to the stationary one, the geometrical contribution to the Berry phase in 
( 1 1 )  is nAQ, while the magnetic flux contributes a phase a A 0 .  For the periodic case 
where A0=27r, the geometrical contribution to Berry's phase is trivial, while the 
contribution from the magnetic flux is 2~x2, which is still observable by interference. 

On the other hand, when 8, = 27r it is reasonable to use a single-valued wavefunction 
with the boundary condition 

they are physica!!y comp!ete!y different: 

+"(@) = i2")-1!2 exp[ i (n;a) (~  -@)j 

lj.(0+27r)= lj,,(@). (14) 

The single-valued energy eigenfunction which satisfies ( 1 )  for V = 0 is 

$,,(e) = (27r)-'l2 exp[in(e-@)] (15) 

where n = 0, f l ,  +2, .  . . . The energy eigenvalue in ( I )  for V = 0 is 

&,, = h2(n-a)2/2r (16) 

which now depends on the magnetic flux. This dynamical effect, in which the energy 
eigenvalues of a particle in a region where there is no magnetic field depend on the 
enclosed magnetic flux, is called the 'bound-state AB effect' [ 5 , 6 ] .  The energy in (16) 
would contribute to the dynamical phase. The Berry phase when 8, = 27r is calculated 
from (IO). When (15)  in the gauge for which A,=O is used in (IO),  the Berry phase is 

(17) 

If one box (circle) is rotated by A@ = 211 radians with respect to the other, the Berry 
phase is a trivial 27rn, which is not observable. 

When the topology of the system changes so that the path of the electron cannot 
be shrunk to a point without crossing the magnetic flux there are (at least) two solutions 

y , (T)  = n [ O ! T ) - O ( O ) !  = nAQ. 
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possiblet. One is based on a multivalued wavefunction which gives a non-trivial 
flux-dependent Berry phase and no bound state AB effect. The other is based on a 
single-valued wavefunction which has a trivial non-observable Berry phase and exhibits 
a bound state AB effect. The two solutions can in principle be distinguished from each 
other by interference effects [l 11 or spectroscopic measurements. 
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